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ABSTRACT 

Several methods of combining a number of time series into a single series are 

discussed.   They are all individual filtering followed by summation and are somewhat 

like Wiener filtering in that a least squares criterion is used to define the filter co- 

efficients.   They differ from Wiener filtering in that signal information is given in the 

form of various linear constraints on the filter coefficients rather than being given as 

a signal correlation function.   The formulas are worked out explicitly for the case of 

two time series and three filter points and presented in such a way as to make 

generalization clear. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 

111 



DEFINITIONS 

Let f.(T) be an ordinary sampled-data filter on an x (t) input time series a nci 

let f.(T) be likewise on x (t).   The final output y(t) is the sum of the separate outputs. 

Mathematically we have 

2     t-l 
y(t)  =    £     E    x (t-r)f (T) (1) 

k=l   T=o 

For the sake of illustration, we will use only n = 2 time filters and 2 time 

series and we will further choose three point filters, i.e. , -1=3.   Results will be pre- 

sented so that generalization should be clear to the reader.    Formula (1) may be written 

explicitly as 

y(t)  =   [ xx(t) filtered ] + [ x (t)  filtered ] 

=   [ x:(t) fjtf)) + x^t-1) fj(l) + x2(t-2) f1(2)] + [ x2(t) f2(0) + x2(t-l) f2(l) + x3(t-2) f2(2)] 

(2) 

Illustration #1 Minimum variance (power) 

It is desired to find the filter coefficients which will minimize the power in the 

filter's output. 

P =  power  =   ]] y(t) (3) 
t 



If the- filter coefficients are zero, the output power will be zero so the problem 

is trivial and not fully formed.   Later we will introduce constraints which bring about 

more interesting solutions.   However, it is worthwhile going through with this prob- 

lem as it contains the basic mathematics in simplest form.    The situation can be com- 

pared with Laplace's equation where the solution is a constant until boundary values 

are considered. 

The power is a quadratic function of the filter coefficients.   To find the minimum 

we treat each coefficient as a variable and set partial derivatives of power with respect 

to the filter coefficients equal zero.   Because of this the method is called least squares. 

This will give a set of n x l = 6 equations for the six unknowns. 

For example, to get one equation we insert (2) into (3) and differentiate with 

respect to f.(0). 

T y(t)2   =   }] 2 Xl(t) y(t) (4) 
V '     t t 

0 = rn(0) f2(0) + r12(0) yo) + rn<-l) t^l) + r^-1) yi) + rn(-2) f,(2) + r^-2) f2(2) 

(5) 

where we nave introduced the definition of correlation 

rij(T)  "   2 xi<t) Xj<t+T> (6) 

If the data x(t) is imagined to have infinite duration in time, it is necessary to 

introduce a normalizing factor into (6).   In practice it is unimportant. 



Likewise differentiating with respect to each of the other six coefficients of f 

gives six equations which may be arranged as: 

11 

21 

1 1 

21 

11 

21 

0)r12(0)   rn(-l)r12(-l)1r11(-2)r12(-2) 

0)r22(0)    r21(-l)r22(-l)    r21(-2)r22(-2) 

Dr12(l)    rn(0)r12(0)        ru<-l) r^-1) 

l) r22(1> i r21(0)   r22(0)    'r21
(-1)r22(-1) 

2)r12(2)r11(l)  r^l)    ' rn(0)  r^O) 

2)r22(2)    r21(l)  r^l)      r^O)  r^O) 

fx(0) 0 

f2(0) 0 

fx<l) 0 

f2(l) 0 

fx(2) 0 

f2(2) 0 

_              

(7) 

We abbreviate this set as 

RF   =   0 

If we take the 6x6 matrix of coefficients and partition it into a 3x3 matrix of 2 x 2 

submatrices, we have 

R   = 

R(0) R(-l) R(-2) 

R(l) R(0) R(-l) 

R(2)     R(l)       R(0) 

(8) 

where R(T) is the 2x2 matrix 

R(T)  = 
rn(T)     r12(r) 

r21(r)     r22(r) 

T 
= R  (-T) (9) 



It may be noticed that all the submatrices on the main diagonal are identical to each 

T 
other.   The same may be said of other diagonals.    Furthermore, R(T) = R   (-T)  By 

inspection the matrix is symmetric.   The matrix is positive semi-definite because 

T 
the power output of the filter is a quadratic function of the f coefficients F   RF, which 

must be positive for any F.   All this is the Toeplitz property of R. 

The solution to this problem is that all the filter coefficients equal zero because 

the right side of Equation (7) equals zero, as we anticipated.    The importance of this 

example comes thru the introduction of the Toeplitz matrix which plays a central role 

in time series analysis and the examples to follow. 

Illustration #2   The constraint f.(0) = 1 

Suppose we wish to minimize /^ y(t)   as before but to make the additional 
t 

constraint f,(0) = 1.   One method would be to proceed as before replacing f.(0) by 1 

wherever it occurs and dropping the equation obtained by      " . .      =  0. 

The trouble with that approach is that we will no longer have a Toeplitz matrix 

like that in formula (7) but rather a matrix with much less symmetry.    For this reason 

we will introduce the method of Lagrange multipliers.   It will still give us a Toeplitz 

matrix like (7) for a large class of problems with linear and quadratic constraints. 

Several problems of this class will be discussed in later examples. 

The Lagrange method, as applied to illustration #2, is to minimize 

E  =   [ ZyOO2] ~\ [^(0)-!] (10) 



by setting it's derivatives with respect to each of the six coefficients of f and with 

respect to X equal to zero.   Then solve the seven equations for the f's and X. 

dE 
To see that the Lagrange method gives the desired result, note that  -rrr gives 

O A. 

the constraint equation.   Then at the minimum of E, X will multiply [f (0) — 1 ] =0. 

V      2 Thus minimizing E is equivalent to minimizing /_,y(t) . 
t 

Partial derivative of E with respect to the f coefficients gives 

R 

X 
0 
0 
0 
0 
0 

(11) 

If we divide F by X on the left side and X by X on the right, we will have a set of 

simultaneous equations for F/X.    Then we can pick f (0) = 1 and this determines X and 

all the f coefficients. 

Illustration #3  Levin's filter 

V       2 Again we minimize /j y(t)   but with the constraints 

1  =  f^O + f^O) 

0  =  fjW+tyl) (12) 

0 =  f1(2)+f2(2) 



Levin   arrived at these constraints by wanting the filter to pass that signal 

which is common to x (t) and x (t) without distortion.   To show there is no distortion 

of the common part s(t) of x (t) and x (t) write 

xx(t)  =  s(t) + Zl(t) 

x2(t)  =   s(t) + z2(t) 
(13) 

Then from (2) 

y(t) =   s(t) + (terms in z   and z   but not s) 

Using Lagrange's method, we differentiate 

P   ..2 
E  =   { £y(t)  } -^[fj^ + yO)-!] -X2[f1(l) + f2(l)] -\3[f1(2) + f2(2)] (14) 

getting for 
9E 

Mk(T) 

R 

"•" 
—         — 

fx(0) xi 

f2(0) h 
f2(l) X2 

f2(l) X2 

f2(2) X3 

f2(2) h 

(15) 

which we may write as 



1 0 0 

1 0 0 

0 1 0 

0 1 0 

0 0 1 

0 0 1 

(16) 

which we abbreviate as 

RF  =  GA (17) 

We can write the constraint equation down directly or go through the formalism of 

taking 
5E 
ax =   0  for each X. 

110    0    0    0 

0    0    110    0 

0    0    0    0    11 

fx(0) 

f2(0) 

tfi) 

f2(D 

f/2) 

f2(2) 

1 

0 

0 

(18) 

which we may abbreviate as 

T 
G    F   =   D (19) 



Now we want to solve the set (17) and (19) 

GTF   =  GTR_1GA multiply (17) by GTR_1 

D  =  G   R~   GA insert (19) 

A   =   (GTR_1G)"1D solve for A (20) 

RF   =  G(GTR_1G)"1D insert into (17) 

F   =  R"
1
G(G

T
R"

1
G)"

1
D solve for F (21) 

which is the desired solution.    From (21) it may be seen that a scale factor in R does 

not affect F.    This justifies the earlier assertion that a scale factor in R is unimportant. 

The actual power minimum obtained is 

T T    T    -1     -1 
F   RF   =  D   (G   R     G)     D (22) 

-1 2 
The quantity R     G is computed efficiently by the Levinson recursion  . 

Repositioning the one in the vector D will produce Levin filters with delayed 

T 
signal outputs.   Some positions will reduce the output noise power F   RF more than 

others. 



Illustration #4    A modification of Levin's constraint 

In one application of Levin's filter it was observed that the filter coefficients 

weighted some channels very weakly or even with negative weights.   This seemed un- 

satisfactory because in the experimental data the channel gains were not well controlled 

and the signals s(t) were not truly identical in the channels.   A modification of Levin's 

constraints which retains the idea of passing the common part of x (t) and x (t) without 

distortion but leads to an even weighting of signals is 

1/2 

1/2 

0 

0 

fx<o) 

f2(0) 

fjW + yi) 

f x(2) + f2(2) 

(23) 

These constraints lead to the same formal equations as before 

RF  =  GA 

T 
G   F  =  D 

(17) 

(19) 

where in this case 

G   = 

10 0 0 

0 10 0 

0 0 10 

0 0 10 

0 0 0 1 

0    0    0    1 

D  = 

1/2 

1/2 

0 

0 (24) 
(25) 

-" 9 



Although signals are forced to be weighted equally some channels may still be 

weighted more heavily than others, due to other filter lags than the zeroth lag.   Although 

this might be good it led to trouble in one application when experimental data channel 

timing was not well controlled. 

Illustration #5    Prediction Error 

The constraints 

f,(0)  =   1 
(26) 

f2(0)  =  0 

3 
give rise to the prediction error filter   at unit span for the signal x (t).   This filter is 

so named because (2) can be written 

y(t)   =  x (t) — (terms dependent on time before t) (27) 

V 2 
Since   /_j y(t)   is minimum, the "terms dependent on time before t' try to cancel 

t 
x (t).   Those "terms" are the prediction filter of x (t) and y(t) is the prediction error 

signal. 

The prediction error filter for span = 2 is given by the constraints 

fjCO) = i 

f2(0) = o 

fx(l) = o                                                                      (28) 

f2(D = o 

Span = 2 means the prediction is done with terms depending on time at and before t-2. 

10 



Illustration #6     The general linear constraint 

A fully generated example of two linear constraints is: 

dL   =  V10fl(0) + Vllfl(1) + V12fl(2) + V20f2(°) + V21f2(1) + V22f2(2) 

d2  = w10£1(0) + w11f1(l)+w12f1(2) + w     f2(0) + w21f2(l) + w22f2(2) 

This leads to 

G   = 

10 

'20 

11 

v 
21 

12 

22 

w 
10 

w 
20 

w 
11 

w 
21 

w 
12 

w 
22 

D  = 

Illustration #7     Quadratic constraints 

Quadratic constraints have not become well known but they are tractable using 

similar methods. 

This will be illustrated by means of the annihilation filter. * The constraint is 

that the power coming out of the f.(T) filter plus the power coming out of the f„(T) filter 

It utilizes coherencies among the channels to annihilate the output y(t). 

11 



should have a constant ( = 1) expected value but there should still be minimum power in 

the sum (3) as described in Illustration #1. 

Explicitly, this constraint is 

1 = YJ [^(O) xx(t) + f^l) Xl(t-1) + fj(2) Xl(t-2)]2 + [f2(0) x2(t) + f2(l) x2(t-l)+ f2(2) x2(t-2)]i 

Taking derivatives as in example #1 leads to 

"\ 

R-X 

I 

rn(0)        0      I rn(-l)        0 rn(-2)        0 

0 r22(0)  I      0 r22(-l) |      0 r22(-2) 

rnd) 0       |rn(0) 0        jrn(-l) 0 

0 r22(l)  |      0 r22(0)    |      0 r^-2) 

rn(2) 0      |r11(D 0        I rH(0) 0 

0 r22(2)   I      0 r22(l)    j      0 r22(0) 

F   =  0 

This is a generalized eigenvector-eigenvalue problem whose solution may be 

obtained by standard methods. A recursion scheme to speed computations like the 

Levinson method has not yet been developed for problems with quadratic constraints. 

JC/lmm 
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